Polyethylene Toughened by CaCO₃ Particle*: Brittle–Ductile Transition of CaCO₃-Toughened HDPE

QIANG FU,[†] GUIHENG WANG, and JIUSI SHEN

Department of Polymer Science & Materials, Chengdu University of Science & Technology, Chengdu, Sichuan 610065, People's Republic of China

SYNOPSIS

The dependencies of the notched Izod impact toughness of HDPE/CaCO₃ blends on CaCO₃ particle concentration and particle size are analyzed. It was found that the notched Izod impact strength (S) of HDPE/CaCO₃ blends depends discontinuously on CaCO₃ particle concentration. A brittle-ductile transition occurs when the CaCO₃ volume fraction (V_f) increases to a critical value (V_f) . Furthermore, a brittle-ductile transition master curve can be constructed by taking the matrix ligament thickness (L) into account as a parameter instead of V_f . The results show that the critical matrix ligament thickness (L_c) is a single parameter for the transition and $L_c = 5.2 \,\mu m$ for HDPE/CaCO₃ blends. The impact strength, however, varies considerably with CaCO₃ particle size, which shows that CaCO₃ particle size is another dominating parameter for the toughness of HDPE/CaCO₃ blends. © 1993 John Wiley & Sons, Inc.

INTRODUCTION

Toughening of polymeric materials is often achieved by modification with rubber. This method, however, lowers the modulus of materials. Rigid inorganic toughening is a rather new route to plastic modification.¹⁻⁴ Compared with rubber-toughening, the toughening with rigid inorganic particles increases not only toughness but also modulus, and it is very cheap.

In this paper, we investigated the effects of $CaCO_3$ particle concentration and size on the impact strength of HDPE/CaCO₃ blends. The toughening mechanism of HDPE/CaCO₃ blends has been discussed from the point of view of Wu's criterion on brittle-ductile transitions.^{5,6}

EXPERIMENTAL

1. Materials

The high-density polyethylene (HDPE) 7000F used in this study came from Japan with d = 0.951 g/ cm³ and MI = 0.01 g/10 min. Three types of CaCO₃ were used as the dispersed particle, which came from Peng county, Sichuan, China, and were phosphate surface-treated. They have essentially the same chemical composition and are of roughly spherical shape. The average sizes were 6.66, 7.44 and 15.9 μ m, respectively.

2. Sample Preparation

 $CaCO_3$ and HDPE were mixed in a two-roll mill at 150°C for 10 min. The samples for impact testing were prepared by mold pressing at 180°C under pressure of 80 kg/cm² in the form of a sheet of 4.0 mm in thickness, then machined in the form of bars.

3. Impact Testing

Notched specimens were tested with an IZOD UJ-40 Impact Tester according to Chinese Standard GB-1843-80. Testing was carried out at 25° C or at -14° C, and the mean value of 10 measurements for each group of samples was taken.

4. Scanning Electron Microscopy (SEM)

A Hitachi S-520 scanning electron microscope was used to observe the CaCO₃ particle size, the surface-

^{*} This project was supported by the National Natural Science Foundation of China.

[†] To whom correspondence should be addressed.

Journal of Applied Polymer Science, Vol. 49, 673-677 (1993)

^{© 1993} John Wiley & Sons, Inc. CCC 0021-8995/93/040673-05

to-surface interparticle distance in the ligament thickness, and the fracture morphology.

RESULTS AND DISCUSSION

1. Impact Strength and Brittle-Ductile Transition

The curves of notched Izod impact strength vs. the CaCO₃ weight fraction (W_f) at 25°C are shown in Figure 1. A definite brittle-ductile transition can be observed in Figure 1, at a critical weight fraction (W'_f) of 22.3, 25.4, and 45.0% for curves a $(\bar{d}n = 6.66 \ \mu\text{m})$, b $(\bar{d}n = 7.44 \ \mu\text{m})$, and c $(\bar{d}n = 15.9 \ \mu\text{m})$, respectively.

The relationships between $CaCO_3$ volume fraction (V_f) and W_f are as follows:

$$V_f = \rho_m \cdot W_f / [(\rho_m - \rho_c) \cdot W_f + \rho_c]$$
(1)

where ρ_m is the density of HDPE, $\rho_m = 0.951 \text{ g/cm}^3$, ρ_c is the density of CaCO₃, and $\rho_c = 2.7 \text{ g/cm}^3$. Through eq. (1), the W_f can be rewritten into V_f . Figure 2 shows the S vs. V_f , from which the V'_f of 9.3% ($dn = 6.66 \ \mu\text{m}$), 10.7% ($dn = 7.44 \ \mu\text{m}$), and 22.3% ($dn = 15.9 \ \mu\text{m}$) is obtained.

Figures 3 and 4 show the curves of impact strength of HDPE/CaCO₃ blends (6.66 μ m) vs. the CaCO₃ weight fraction or volume fraction at low temperature: -14°C. A brittle-ductile transition occurred at the same critical weight fraction and critical volume fraction as that at 25°C for $\bar{d}n = 6.66 \,\mu$ m.

Figure 1 Notched Izod impact strength vs. CaCO₃ weight fraction for HDPE/CaCO₃ blends: (a) $(\bar{d}n = 6.66 \ \mu m)$; (b) $(\bar{d}n = 7.44 \ \mu m)$; (c) $(\bar{d}n = 15.9 \ \mu m)$.

Figure 2 Notched Izod impact strength vs. $CaCO_3$ volume fraction for HDPE/CaCO₃ blends, replotted from Figure 1.

2. Critical Matrix Ligament Thickness (L_c)

According to Wu's criterion for the brittle-ductile transition of nylon-6/EPDM blends,^{5,6} the critical matrix ligament thickness (L_c) is only one parameter that dominates the transition. To test if Wu's criterion can be used for the HDPE/CaCO₃ blends, eq. (2) is used to convert the V_f into L:

$$L = \bar{d}n[(3.14/6V_f)^{1/3} - 1]$$
(2)

It is interesting to find that instead of the three curves in Figure 2 a single brittle-ductile transition

Figure 3 Notched Izod impact strength vs. $CaCO_3$ weight fraction for HDPE/CaCO₃ blends at $-14^{\circ}C$, $CaCO_3$ with a size of 6.66 μ m.

Figure 4 Notched Izod impact strength vs. $CaCO_3$ volume fraction for HDPE/CaCO₃ blends at $-14^{\circ}C$, replotted from Figure 3.

master curve can be constructed as shown in Figure 5. This result proves that Wu's criterion can also be used in HDPE/CaCO₃ blends; the critical matrix ligament thickness (L_c) for HDPE/CaCO₃ blends is 5.2 μ m.

The impact strength, however, varies considerably with CaCO₃ size, which shows that particle size is another dominating parameter for the toughness of HDPE/CaCO₃ blends. It seems that the smaller the CaCO₃ particle size the higher the impact strength and the lower the critical volume fraction (V'_f) , will be. In other words, CaCO₃ particles of large size cannot be used as a toughening agent. This can be well understood since the stress field around the large particles are large and thus cracks are propagated rapidly around the particle, leading to the catastrophic break previous to matrix yielding.

To verify the critical matrix ligament thickness

Figure 5 A single-transition master curve for HDPE/ CaCO₃ blends. Replotted from Figure 2 using matrix ligament thickness L instead of V_f : (a) $(\bar{dn} = 6.66 \,\mu\text{m})$; (b) $(\bar{dn} = 7.44 \,\mu\text{m})$; (c) $(\bar{dn} = 15.9 \,\mu\text{m})$.

 (L_c) , the surface-to-surface interparticle distance was measured by SEM. CaCO₃ of size 7.44 μ m was used and the results are shown in Table I.

A good agreement exists between the value calculated by eq. (2) with that measured by SEM. The ligament appears to form a bridge from which the toughening with rubber and rigid particles may well be related.

There are many factors, such as matrix toughness, interphase adesion, and particle aggregation, that affect the brittle-ductile transition. This aspect, outside the scope of the present paper, will be discussed in detail elsewhere.

3. Impact Fracture Model in HDPE/CaCO₃ Blends

To understand the impact fracture model in HDPE/ CaCO₃ blends, we divided Figure 5 into three regions, e.g., the brittle region (I), the transition region

Table I Surface-to-Surface Interparticle Distance in HDPE/CaCO₃ Blends (CaCO₃ of Size 7.44 μ m Was Used).

CaCO ₃ (wt %)	Concentration (vol %)	Interparticle Distance (µm)		
		Measured by SEM	Calculated by Eq. (2)	S (J/m)
10	3.8	9.4-10.0	10.4	106
20	8.1	6.0 - 6.5	6.4	110
30	13.1	4.5-4.9	4.4	430
40	19.0	2.8-3.3	3.0	615

(II), and the ductile region (III). The micrographs of the fractured surfaces in these regions were carefully studied.

Cavitation and Craze in Region I

In region I, $L > L_c$, the impact strength of HDPE/ CaCO₃ blends is smaller than 200 J/m, and a brittle behavior is observed. Figure 6(a) shows the CaCO₃ particle-induced cavitation, which presumably acted as a stress concentrator. The main way by which the impact energy is dissipated is cavitation-craze, so the energy dissipation is very low.

(a)

Cavitation and Shear Yielding Coexist in Region II

In region II (brittle-ductile transition region), $L < L_c$, the impact strength is obviously improved, and S varies from 250 to 450 J/m. Two kinds of fracture characteristics can be observed in the fracture surface, which are shown in Figure 6(b) and (c), respectively. At the bases of the notch, we can observe many sticks and a large plastic deformation [Fig. 6(b)]. However, far from the bases of the notch, there exists cavitation where the CaCO₃ particles are dislodged from the matrix during impact fracture [Fig. 6(c)]; it is still a brittle fracture. Therefore

(c)

(d)

Figure 6 SEM micrograph for fracture surfaces of the notched Izod impact at 25° C: (a) brittle fracture surface for HDPE/CaCO₃ = 90/10; (b, c) fracture surface for HDPE/CaCO₃ = 75/25; (d) ductile fracture for HDPE/CaCO₃ = 50/50.

in the transition region, cavitation and shear yielding coexist: Shear yielding can absorb a lot of impact energy and the toughness is increased considerably.

Matrix Yielding in Region III

In region III, as L decreases further, the impact strength reaches 850 J/m, about four times that of pure HDPE, namely, ultra-toughness HDPE blends, as shown in Figure 6(d). Matrix yielding becomes larger and larger, fibrils are denser, shear yielding propagates and pervades over the entrive deformation zone, a lot of energy is dissipated, and ultratoughening materials can be obtained.

Therefore, we can conclude that the brittle-ductile transition corresponds to the transition of cavitation-craze fracture to shear yielding, which dissipates the most of impact energy. This has been explained by the percolating process of "spherical stress" volume in the random lattice.⁷

CONCLUSION

The notched Izod impact strength of $HDPE/CaCO_3$ blends occurs via a brittle-ductile transition when the CaCO₃ volume fraction reaches a critical value V'_{f} . A brittle-ductile transition master curve can be constructed by using the matrix ligament thickness, $L_{c} = 5.2 \ \mu m$ for HDPE/CaCO₃ blends. The particle size greatly affects the toughness of HDPE/CaCO₃ blends. The brittle-ductile transition corresponds to the transition of cavitation-craze fracture to shear-yielding fracture.

The authors are thankful to Sir Geoffrey Allen for helpful discussion of this work with us.

REFERENCES

- Y. Suetsuge, in *Fifth Annual Meeting*, *PPS*, April 11– 14, 1989, Kyoto, Japan.
- Y. Suetsuge, in Sixth Annual Meeting, PPS, April 17– 20, 1990, Nice, France.
- 3. Q. Fu and G. Wang, Polym. Eng. Sci., 32, 94 (1992).
- Q. Fu and G. Wang, PPS-Regional Meeting of Asia/ Australia, Oct. 15-18, 1991, Shanghai, China.
- 5. S. Wu, Polymer, 26, 1855 (1985).
- 6. S. Wu, J. Appl. Polym. Sci., 35, 549 (1988).
- 7. Q. Fu and G. Wang, Polym. Int., to appear.

Received November 8, 1991 Accepted October 28, 1992